1. An M, Fan L, Huang J, Yang W, Wu H, Wang X, et al. The gap of water supply-Demand and its driving factors: From water footprint view in Huaihe River Basin. Plos one. 2021;16(3):e0247604. [ DOI:10.1371/journal.pone.0247604] [ PMID] [ ] 2. Saravanan A, Kumar PS, Jeevanantham S, Karishma S, Tajsabreen B, Yaashikaa P, et al. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere. 2021;280:130595. [ DOI:10.1016/j.chemosphere.2021.130595] [ PMID] 3. Ahmed J, Thakur A, Goyal A. Industrial Wastewater and Its Toxic Effects. In: Shah MP, editor. Biological Treatment of Industrial Wastewater: The Royal Society of Chemistry; 2021. p. 1-14. [ DOI:10.1039/9781839165399-00001] 4. Patwardhan AD. Industrial wastewater treatment. PHI Learning Pvt. Ltd.: 2017. 5. Gunatilake SK. Methods of removing heavy metals from industrial wastewater. Methods. 2015;1(1):14. 6. Wang S HJ, He S, Wang J. Removal of ammonia and phenol from saline chemical wastewater by ionizing radiation: Performance, mechanism and toxicity. Journal of Hazardous Materials. 2022;5(433):128727. [ DOI:10.1016/j.jhazmat.2022.128727] [ PMID] 7. Stephenson RL BJ. The industrial wastewater systems handbook. CRC Press2018 2018 May 4. [ DOI:10.1201/9780203736586] 8. Garg S, Chowdhury ZZ, Faisal AN, Rumjit NP, Thomas P. Impact of industrial wastewater on environment and human health. Advanced Industrial Wastewater Treatment and Reclamation of Water: Comparative Study of Water Pollution Index during Pre-industrial, Industrial Period and Prospect of Wastewater Treatment for Water Resource Conservation. . 2022:197-209. [ DOI:10.1007/978-3-030-83811-9_10] 9. Barakat M. New trends in removing heavy metals from industrial wastewater. Arabian journal of chemistry. 2011;4(4):361-77. [ DOI:10.1016/j.arabjc.2010.07.019] 10. Deng Y, Zhao R. Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports. 2015;1:167-76. [ DOI:10.1007/s40726-015-0015-z] 11. Miklos DB, Remy C, Jekel M, Linden KG, Drewes JE, Hübner U. Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review. Water research. 2018;139:118-31. [ DOI:10.1016/j.watres.2018.03.042] [ PMID] 12. Babu DS, Srivastava V, Nidheesh P, Kumar MS. Detoxification of water and wastewater by advanced oxidation processes. Science of the Total Environment. 2019;696:133961. [ DOI:10.1016/j.scitotenv.2019.133961] 13. Liu N, Lei Z-D, Wang T, Wang J-J, Zhang X-D, Xu G, et al. Radiolysis of carbamazepine aqueous solution using electron beam irradiation combining with hydrogen peroxide: Efficiency and mechanism. Chemical Engineering Journal. 2016;295:484-93. [ DOI:10.1016/j.cej.2016.03.040] 14. Meng M, Pellizzari F, Boukari SO, Leitner NKV, Teychene B. Impact of e-beam irradiation of municipal secondary effluent on MF and RO membranes performances. Journal of membrane science. 2014;471:1-8. [ DOI:10.1016/j.memsci.2014.07.046] 15. Jan S, Kamili AN, Parween T, Hamid R, Parray JA, Siddiqi T, et al. Feasibility of radiation technology for wastewater treatment. Desalination and Water Treatment. 2015;55(8):2053-68. [ DOI:10.1080/19443994.2014.937749] 16. Kreedy KMT, Qassem SQ, Hani FH, Sawadi HK. Ionizing Rays its Sources and Medical Applications. Innovative: International Multidisciplinary Journal of Applied Technology (2995-486X). 2024;2(6):56-64. 17. Parke WC, Parke WC. Ionizing radiation and life. Biophysics: A Student's Guide to the Physics of the Life Sciences and Medicine. 2020:279-324. [ DOI:10.1007/978-3-030-44146-3_8] 18. Babuponnusami A, Sinha S, Ashokan H, Paul MV, Hariharan SP, Arun J, et al. Advanced oxidation process (AOP) combined biological process for wastewater treatment: A review on advancements, feasibility and practicability of combined techniques. Environmental research. 2023:116944. [ DOI:10.1016/j.envres.2023.116944] [ PMID] 19. Wojnárovits L, Takács E, Szabó L. Gamma-ray and electron beam-based AOPs. Advanced oxidation processes for water treatment: fundamentals and applications: IWA publishing; 2017. [ DOI:10.2166/9781780407197_0241] 20. Shahi S, Khorvash R, Goli M, Ranjbaran SM, Najarian A, Mohammadi Nafchi A. Review of proposed different irradiation methods to inactivate food‐processing viruses and microorganisms. Food science & nutrition. 2021;9(10):5883-96 [In Persian]. [ DOI:10.1002/fsn3.2539] [ PMID] [ ] 21. Palani G, Arputhalatha A, Kannan K, Lakkaboyana SK, Hanafiah MM, Kumar V, et al. Current trends in the application of nanomaterials for the removal of pollutants from industrial wastewater treatment-a review. Molecules. 2021;26(9):2799. [ DOI:10.3390/molecules26092799] [ PMID] [ ] 22. Iqbal M, Abbas M, Arshad M, Hussain T, Ullah Khan A, Masood N, et al. Short Communication Gamma Radiation Treatment for Reducing Cytotoxicity and Mutagenicity in Industrial Wastewater. Polish Journal of Environmental Studies. 2015;24(6). [ DOI:10.15244/pjoes/59233] [ PMID] 23. Madah AH KM, Khorami Pour S. Comparison of gamma ray and ultraviolet radiation on regrowth control of microorganism in urban sewage effluent. Journal of Environmental Science and Technology. 2020;22(7):287-300 [In Persian]. 24. Chu L, Wang J, He S, Chen C, Wojnárovits L, Takács E. Treatment of pharmaceutical wastewater by ionizing radiation: Removal of antibiotics, antimicrobial resistance genes and antimicrobial activity. Journal of Hazardous Materials. 2021;415:125724. [ DOI:10.1016/j.jhazmat.2021.125724] [ PMID] 25. Kim T-H, Nam Y-K, Joo Lim S. Effects of ionizing radiation on struvite crystallization of livestock wastewater. Radiation Physics and Chemistry. 2014;97:332-6. [ DOI:10.1016/j.radphyschem.2013.12.033] 26. Wang S, Wang J. Oxidative removal of carbamazepine by peroxymonosulfate (PMS) combined to ionizing radiation: Degradation, mineralization and biological toxicity. Science of The Total Environment. 2019;658:1367-74. [ DOI:10.1016/j.scitotenv.2018.12.304] [ PMID] 27. He H, Wang S, Wang J. Degradation of 3-methylindole by ionizing radiation: Performance and pathway. Separation and Purification Technology. 2021;278:119515. [ DOI:10.1016/j.seppur.2021.119515] 28. He H, Wang S, Wang J. The performance and pathway of indole degradation by ionizing radiation. Chemosphere. 2022;287:131983. [ DOI:10.1016/j.chemosphere.2021.131983] [ PMID] 29. Wang J, Wang J. Application of radiation technology to sewage sludge processing: a review. Journal of Hazardous Materials. 2007;143(1-2):2-7. [ DOI:10.1016/j.jhazmat.2007.01.027] [ PMID] 30. Lv X, Song Z, Yu J, Su Y, Zhao X, Sun J, et al. Study on the demulsification of refinery oily sludge enhanced by microwave irradiation. Fuel. 2020;279:118417. [ DOI:10.1016/j.fuel.2020.118417] 31. Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of environmental chemical engineering. 2017;5(3):2782-99. [ DOI:10.1016/j.jece.2017.05.029] 32. Carmen Z, Daniela S. Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents-a critical overview: IntechOpen Rijeka; 2012. [ DOI:10.5772/32373] 33. Hina H, Nafees M, Ahmad T. Treatment of industrial wastewater with gamma irradiation for removal of organic load in terms of biological and chemical oxygen demand. Heliyon. 2021;7(2). [ DOI:10.1016/j.heliyon.2021.e05972] [ PMID] [ ] 34. Hasanbeigi A, Price L. A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry. Journal of Cleaner Production. 2015;95:30-44 [In Persian]. [ DOI:10.1016/j.jclepro.2015.02.079] 35. Ma H, Shen M, Tong Y, Wang X. Radioactive Wastewater Treatment Technologies: A Review. Molecules. 2023;28(4):1935. [ DOI:10.3390/molecules28041935] [ PMID] [ ] 36. Vialkova E, Obukhova M, Belova L. Microwave irradiation in technologies of wastewater and wastewater sludge treatment: A review. Water. 2021;13(13):1784. [ DOI:10.3390/w13131784] 37. Liu X, Wang J. Decolorization and degradation of various dyes and dye-containing wastewater treatment by electron beam radiation technology: an overview. Chemosphere. 2024:141255. [ DOI:10.1016/j.chemosphere.2024.141255] [ PMID] 38. Gangnaik AS, Georgiev YM, Holmes JD. New generation electron beam resists: a review. Chemistry of Materials. 2017;29(5):1898-917. [ DOI:10.1021/acs.chemmater.6b03483] 39. Hossain K, Maruthi YA, Das NL, Rawat K, Sarma K. Irradiation of wastewater with electron beam is a key to sustainable smart/green cities: a review. Applied water science. 2018;8:1-11. [ DOI:10.1007/s13201-018-0645-6] 40. Rajendran S, Priya T, Khoo KS, Hoang TK, Ng H-S, Munawaroh HSH, et al. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere. 2022;287:132369. [ DOI:10.1016/j.chemosphere.2021.132369] [ PMID] 41. Tolabi A DZ, Ghaneeian MT. Application of Coagulation and Flocculation Coupled with Photo Catalytic Degradation (TiO2/UV-A) for 2-(Methoxy Carbonyl Amino-methyl)-acrylic acid methyl ester dye Removal from Synthetic wastewater. Tolooebehdasht. 2017;16(3):34-45 [In Persian]. 42. Jiang L IH. Current research on high‐energy ionizing radiation for wastewater treatment and material synthesis. Environmental Progress & Sustainable Energy. 2020;39(1):13294. [ DOI:10.1002/ep.13294] 43. Changotra R RH, Guin JP, Khader SA, Dhir A. Techno-economical evaluation of coupling ionizing radiation and biological treatment process for the remediation of real pharmaceutical wastewater. Journal of Cleaner Production. 2020;1(242):118544. [ DOI:10.1016/j.jclepro.2019.118544] 44. Madureira J, Barros L, Melo R, Verde SC, Ferreira IC, Margaça F. Degradation of phenolic acids by gamma radiation as model compounds of cork wastewaters. Chemical Engineering Journal. 2018;341:227-37. [ DOI:10.1016/j.cej.2018.02.036] 45. Attri P, Tochikubo F, Park JH, Choi EH, Koga K, Shiratani M. Impact of Gamma rays and DBD plasma treatments on wastewater treatment. Scientific reports. 2018;8(1):2926. [ DOI:10.1038/s41598-018-21001-z] [ PMID] [ ] 46. Younis SA, Ghobashy MM, Samy M. Development of aminated poly (glycidyl methacrylate) nanosorbent by green gamma radiation for phenol and malathion contaminated wastewater treatment. Journal of environmental chemical engineering. 2017;5(3):2325-36. [ DOI:10.1016/j.jece.2017.04.024] 47. He S, Sun W, Wang J, Chen L, Zhang Y, Yu J. Enhancement of biodegradability of real textile and dyeing wastewater by electron beam irradiation. Radiation Physics and Chemistry. 2016;124:203-7. [ DOI:10.1016/j.radphyschem.2015.11.033] 48. Verde SC, Silva T, Matos P. Effects of gamma radiation on wastewater microbiota. Radiation and environmental biophysics. 2016;55:125-31. [ DOI:10.1007/s00411-015-0617-2] [ PMID] 49. Bhuiyan MR, Rahman MM, Shaid A, Bashar M, Khan MA. Scope of reusing and recycling the textile wastewater after treatment with gamma radiation. Journal of Cleaner Production. 2016;112:3063-71. [ DOI:10.1016/j.jclepro.2015.10.029] 50. Bhuiyan MR, Shaid A, Hossain M, Khan MA. Decolorization and decontamination of textile wastewater by gamma irradiation in presence of H2O2. Desalination and Water Treatment. 2016;57(45):21545-51. [ DOI:10.1080/19443994.2015.1125804] 51. Emami-Meibodi M, Parsaeian M, Amraei R, Banaei M, Anvari F, Tahami S, et al. An experimental investigation of wastewater treatment using electron beam irradiation. Radiation Physics and Chemistry. 2016;125:82-7 [In Persian]. [ DOI:10.1016/j.radphyschem.2016.03.011] 52. Iqbal M, Nisar J. Cytotoxicity and mutagenicity evaluation of gamma radiation and hydrogen peroxide treated textile effluents using bioassays. Journal of Environmental Chemical Engineering. 2015;3(3):1912-7. [ DOI:10.1016/j.jece.2015.06.011] 53. Hassan MS. Removal of reactive dyes from textile wastewater by immobilized chitosan upon grafted Jute fibers with acrylic acid by gamma irradiation. Radiation Physics and Chemistry. 2015;115:55-61. [ DOI:10.1016/j.radphyschem.2015.05.038] 54. Abdou L, Hakeim O, Mahmoud M, El-Naggar A. Comparative study between the efficiency of electron beam and gamma irradiation for treatment of dye solutions. Chemical Engineering Journal. 2011;168(2):752-8. [ DOI:10.1016/j.cej.2011.01.071] 55. Park E, Jo H, Kim H, Cho K, Jung J. Effects of gamma-ray treatment on wastewater toxicity from a rubber products factory. Journal of radioanalytical and nuclear chemistry. 2008;277(3):619-24. [ DOI:10.1007/s10967-007-7094-2] 56. Trojanowicz M, Bobrowski K, Szreder T, Bojanowska-Czajka A. Gamma-ray, X-ray and electron beam based processes. Advanced oxidation processes for waste water treatment: Elsevier; 2018. p. 257-331. [ DOI:10.1016/B978-0-12-810499-6.00009-7] 57. Chmielewski AG. Future developments in radiation processing. Applications of Ionizing Radiation in Materials Processing 1st ed Institute of Nuclear Chemistry and Technology. 2017:501-16. 58. Eskander S, El-Dien FN, Hoballa E, Hamdy K. Capability of Lemna gibba to biosorb cesium-137 and cobalt-60 from simulated hazardous radioactive waste solutions. Journal of microbiology, biotechnology and food sciences. 2011;1(2):148-63. 59. El-Toony MM, Rajab AH, Eid GA, Maziad NM. Groundwater Purification Using Gamma Irradiation under Oxidation and Reduction Conditions. 2022. [ DOI:10.21203/rs.3.rs-1673089/v1] [ PMID] [ ] 60. Musaad R. Disinfection of sewage water and sludge using gamma radiation. 2008. 61. Pricaz M, Uţă A-C. Gamma radiation for improvements in food industry, environmental quality and healthcare. Rom J Biophys. 2015;25(2):143-62. 62. Trojanowicz M. Removal of persistent organic pollutants (POPs) from waters and wastewaters by the use of ionizing radiation. Science of The Total Environment. 2020;718:134425. [ DOI:10.1016/j.scitotenv.2019.134425] [ PMID] 63. Flores-Rojas G, López-Saucedo F, Bucio E. Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: A short review. Radiation Physics and Chemistry. 2020;169:107962. [ DOI:10.1016/j.radphyschem.2018.08.011] 64. Aguilera Y, Consuegra R, Rapado M. Treatment of coffee wastewater by gamma radiation. 1997. 65. Melo R, Verde SC, Branco J, Botelho ML. Gamma radiation induced effects on slaughterhouse wastewater treatment. Radiation Physics and Chemistry. 2008;77(1):98-100. [ DOI:10.1016/j.radphyschem.2007.03.006] 66. Wang R, Chen B, Chen D, Zhao X. Effects of Gamma Irradiation on Organic Membrane Materials. Nuclear Technology. 2020;206(12):1909-18. [ DOI:10.1080/00295450.2020.1721406] 67. Silindir M, Özer AY. Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization. Fabad Journal of Pharmaceutical Sciences. 2009;34(1):43. 68. Changotra R, Rajput H, Guin JP, Varshney L, Dhir A. Hybrid coagulation, gamma irradiation and biological treatment of real pharmaceutical wastewater. Chemical Engineering Journal. 2019;370:595-605. [ DOI:10.1016/j.cej.2019.03.256] 69. Marek T. Removal of persistent organic pollutants (POPs) from waters and wastewaters by the use of ionizing radiation. Science of The Total Environment. 2020;20(718):134425. [ DOI:10.1016/j.scitotenv.2019.134425] [ PMID] 70. Changotra R RH, Guin JP, Khader SA, Dhir A. Techno-economical evaluation of coupling ionizing radiation and biological treatment process for the remediation of real pharmaceutical wastewater. Journal of Cleaner Production. 2020;242:118544. [ DOI:10.1016/j.jclepro.2019.118544] 71. Changotra RR, H.; Guin, J.P.; Varshney, L.; Dhir, A. Hybrid coagulation, gamma irradiation and biological treatment of real pharmaceutical wastewater. Chem Eng J. 2019;370:595-605. [ DOI:10.1016/j.cej.2019.03.256] 72. Hegazy E A-RH, Shehata EM, Adel G, Elbakry S, Eldeghiedy N. Radiation treatment of wastewater for reuse with particular focus on wastewaters containing organic pollutants and removal of heavy metals from wastewater. Iaea Tecdoc Series. 682018. 73. Jianlong WA LC. Research progress of ionizing irradiation technology on wastewater treatment. Chinese Journal of Environmental Engineering. 2017;11(2):653-72. 74. Deshpande M, Kumar KS, Rengaraj R, Venkatakrishnan G, Anand H. Electron Beam Accelerators: Wastewater to Useable Water. Advanced Oxidation Processes for Wastewater Treatment: CRC Press; 2022. p. 93-100. [ DOI:10.1201/9781003165958-8] [ PMID] [ ] 75. Gryczka U, Zimek Z, Walo M, Chmielewska-Śmietanko D, Bułka S. Advanced Electron Beam (EB) Wastewater Treatment System with Low Background X-ray Intensity Generation. Applied Sciences. 2021;11(23):11194. [ DOI:10.3390/app112311194] 76. No SS. Radiation Safety of Gamma and Electron Irradiation Facilities. 77. Tseng AA, Chen K, Chen CD, Ma KJ. Electron beam lithography in nanoscale fabrication: recent development. IEEE Transactions on electronics packaging manufacturing. 2003;26(2):141-9. [ DOI:10.1109/TEPM.2003.817714] 78. Kim Y, Ershov B, Ponomarev A. Features and ways to upgrade electron-beam wastewater treatment. High Energy Chemistry. 2020;54:462-8. [ DOI:10.1134/S0018143920060089] 79. Truc LVT, Can LD, Luu TL. Electron Beam as an Effective Wastewater Treatment Technology in Lab-Scale Application. Journal of Hazardous, Toxic, and Radioactive Waste. 2021;25(2):03120003. [ DOI:10.1061/(ASCE)HZ.2153-5515.0000584] 80. Wang S, Wang J, Chen C, He S, Hu J, Zhang Y. First full-scale application of electron beam technology for treating dyeing wastewater (30,000 m3/d) in China. Radiation Physics and Chemistry. 2022;196:110136. [ DOI:10.1016/j.radphyschem.2022.110136] 81. Wang J, Wang S, Chen C, Hu J, He S, Zhou Y, et al. Treatment of hospital wastewater by electron beam technology: Removal of COD, pathogenic bacteria and viruses. Chemosphere. 2022;308:136265. [ DOI:10.1016/j.chemosphere.2022.136265] [ PMID] [ ] 82. Kumar P, Meena M, Kavar AB, Nama P, Pathak A, Varma R, et al. Experimental study to optimise the treatment efficacy of pharmaceutical effluents by combining electron beam irradiation with conventional techniques. arXiv preprint arXiv:210902479. 2021. 83. Djouider F, Aljohani MS, editors. Simulated industrial wastewater treatment using continuous high-energy electron beam irradiation: Removal of chromium (VI) toxic metal. AIP Conference Proceedings; 2018: AIP Publishing. [ DOI:10.1063/1.5048174] 84. Turtoi M. Ultraviolet light potential for wastewater disinfection. Ann Food Sci Technol. 2013;14(1):153-64. 85. Zyara AM. Removal of viruses from drinking water by chlorine and UV disinfections: Itä-Suomen yliopisto; 2018. 86. Parrish JA, Anderson RR, Urbach F, Pitts D, Parrish JA, Anderson RR, et al. The spectrum of electromagnetic radiation: UV-A in perspective. UV-A: Biological Effects of Ultraviolet Radiation with Emphasis on Human Responses to Longwave Ultraviolet. 1978:1-6. [ DOI:10.1007/978-1-4684-2475-1_1] 87. Collivignarelli MC, Abbà A, Benigna I, Sorlini S, Torretta V. Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability. 2017;10(1):86. [ DOI:10.3390/su10010086] 88. Hijnen W, Beerendonk E, Medema GJ. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water: a review. Water research. 2006;40(1):3-22. [ DOI:10.1016/j.watres.2005.10.030] [ PMID] 89. Cristóvão RO, Botelho CM, Martins RJ, Loureiro JM, Boaventura RA. Fish canning industry wastewater treatment for water reuse-a case study. Journal of Cleaner Production. 2015;87:603-12. [ DOI:10.1016/j.jclepro.2014.10.076] 90. Mkabela M. The development of a measuring technique for the UV-C distribution emitted from low pressure mercury lamps: University of Pretoria; 2019. 91. Asgari B. Review on some applications of ionizing radiation in water, sewage effluent and sludge refinement on an industrial scale. Journal of Radiation and Nuclear Technology. 2017;4(2):39-51 [In Persian]. 92. Rizzo L, Fiorentino A, Anselmo A. Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains. Chemosphere. 2013;92(2):171-6. [ DOI:10.1016/j.chemosphere.2013.03.021] [ PMID] 93. Rosenthal I, Rosenthal I. Microwave radiation. Electromagnetic Radiations in Food Science. 1992:115-54. [ DOI:10.1007/978-3-642-77106-4_5] 94. Mudhoo A, Sharma SK. Microwave irradiation technology in waste sludge and wastewater treatment research. Critical reviews in environmental science and technology. 2011;41(11):999-1066. [ DOI:10.1080/10643380903392767] 95. Xia H, Li C, Yang G, Shi Z, Jin C, He W, et al. A review of microwave-assisted advanced oxidation processes for wastewater treatment. Chemosphere. 2022;287:131981. [ DOI:10.1016/j.chemosphere.2021.131981] [ PMID] 96. Liu L, Wang N, Laghari AA, Li H, Wang C, Zhao Z, et al. A review and perspective of environmental disinfection technology based on microwave irradiation. Current pollution reports. 2023;9(1):46-59. [ DOI:10.1007/s40726-022-00247-2] [ PMID] [ ] 97. Heddleson RA, Doores S. Factors affecting microwave heating of foods and microwave induced destruction of foodborne pathogens-a review. Journal of Food Protection. 1994;57(11):1025-37. [ DOI:10.4315/0362-028X-57.11.1025] [ PMID] 98. Kubo MT, Siguemoto ÉS, Funcia ES, Augusto PE, Curet S, Boillereaux L, et al. Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: a critical review. Current Opinion in Food Science. 2020;35:36-48. [ DOI:10.1016/j.cofs.2020.01.004] 99. Shaw P, Kumar N, Mumtaz S, Lim JS, Jang JH, Kim D, et al. Evaluation of non-thermal effect of microwave radiation and its mode of action in bacterial cell inactivation. Scientific Reports. 2021;11(1):14003. [ DOI:10.1038/s41598-021-93274-w] [ PMID] [ ] 100. Plazas-Tuttle J, Das D, Sabaraya IV, Saleh NB. Harnessing the power of microwaves for inactivating Pseudomonas aeruginosa with nanohybrids. Environmental Science: Nano. 2018;5(1):72-82. [ DOI:10.1039/C7EN00702G] 101. Wu T-N. Environmental perspectives of microwave applications as remedial alternatives. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management. 2008;12(2):102-15. [ DOI:10.1061/(ASCE)1090-025X(2008)12:2(102)] 102. Pino‐Jelcic SA, Hong SM, Park JK. Enhanced anaerobic biodegradability and inactivation of fecal coliforms and Salmonella spp. in wastewater sludge by using microwaves. Water environment research. 2006;78(2):209-16. [ DOI:10.2175/106143005X90498] [ PMID] 103. Parmar H, Asada M, Kanazawa Y, Asakuma Y, Phan CM, Pareek V, et al. Influence of microwaves on the water surface tension. Langmuir. 2014;30(33):9875-9. [ DOI:10.1021/la5019218] [ PMID] 104. Asakuma Y, Kanazawa Y, Parmar H, Pareek V, Phan CM, Evans G. Surface tension profiles under various microwave radiation modes. Journal of Energy and Power Engineering. 2014;8(3). 105. Asakuma Y, Munenaga T, Nakata R. Observation of bubble formation in water during microwave irradiation by dynamic light scattering. Heat and Mass transfer. 2016;52:1833-40. [ DOI:10.1007/s00231-015-1703-3] 106. Zhang J, Pang Q, He Z, Tian C, Wu T, editors. Treatment of Blast Furnace Gas Washing Water by Utilization of Coagulation Associated with Microwave. Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies: An EPD Symposium in Honor of Professor Ramana G Reddy; 2017: Springer. [ DOI:10.1007/978-3-319-51091-0_55] 107. Vialkova E, Zemlyanova M, Danilov O, editors. Energy efficiency in municipal waste treatment. MATEC Web of Conferences; 2018: EDP Sciences. [ DOI:10.1051/matecconf/201817004020] 108. Goitein M, Jermann MJ. The relative costs of proton and X-ray radiation therapy. Clinical Oncology. 2003;15(1):S37-S50. [ DOI:10.1053/clon.2002.0174] [ PMID] 109. Al-Ani MY, Al-Khalidy FR. Use of ionizing radiation technology for treating municipal wastewater. International journal of environmental research and public health. 2006;3(4):360-8. [ DOI:10.3390/ijerph2006030047] [ PMID] 110. Asgari Lajayer B, Najafi N, Moghiseh E. Review on some applications of ionizing radiation in water, sewage effluent and sludge refinement on an industrial scale. Journal of Radiation and Nuclear Technology. 2017;4(2):39-51 [In Persian]. 111. Wang J, Zhuan R, Chu L. The occurrence, distribution and degradation of antibiotics by ionizing radiation: an overview. Science of the Total Environment. 2019;646:1385-97. [ DOI:10.1016/j.scitotenv.2018.07.415] [ PMID] 112. Asgari Lajayer B, Najafi N, Moghiseh E, Mosaferi M, Hadian J. Effects of gamma irradiation on physicochemical and biological characteristics of wastewater effluent and sludge. International Journal of Environmental Science and Technology. 2020;17:1021-34 [In Persian]. . [ DOI:10.1007/s13762-019-02410-7] 113. Tahri L, Elgarrouj D, Zantar S, Mouhib M, Azmani A, Sayah F. Wastewater treatment using gamma irradiation: Tétouan pilot station, Morocco. Radiation Physics and Chemistry. 2010;79(4):424-8. [ DOI:10.1016/j.radphyschem.2009.11.008] 114. Majid M, Bhatti IA, Bhatti HN. Treatment of dyes industrial effluents by ionizing radiation. Asian Journal of Chemistry. 2011;23(6):2392-4. 115. Han B, Kim J, Kim Y. Disinfection of effluent from municipal wastewater plant with electron beam. Radiation treatment of polluted water and wastewater. 2008:109-14. 116. Mousavian SM. New Method of Water and Wastewater Treatment Using Electron Beams. Human & Environment. 2018;16(2):1-19 [In Persian]. 117. Ndong JEU, R.M.; Gregory, R.; Gangoda, M.; Nickelsen, M.G.; Loar, P. Effect of electron beam irradiation on bacterial and Ascaris ova loads and volatile organiccompounds in municipal sewage sludge. Radiat Phys, Chem. 2015;112:6-12. [ DOI:10.1016/j.radphyschem.2015.02.013] 118. Suresh R RB, Chenniappan M, Palanichamy M. Experimental analysis on the synergistic effect of combined use of ozone and UV radiation for the treatment of dairy industry wastewater. Environmental Engineering Research. 2021;26(5). [ DOI:10.4491/eer.2020.375] 119. Iervolino G, Zammit I, Vaiano V, Rizzo L. Limitations and prospects for wastewater treatment by UV and visible-light-active heterogeneous photocatalysis: a critical review. Heterogeneous Photocatalysis: Recent Advances. 2020:225-64. [ DOI:10.1007/978-3-030-49492-6_7] 120. Segneanu AE, Orbeci C, Lazau C, Sfirloaga P, Vlazan P, Bandas C, et al. Waste water treatment methods. Water Treat. 2013:53-80. 121. I Litter M, Quici N. Photochemical advanced oxidation processes for water and wastewater treatment. Recent Patents on Engineering. 2010;4(3):217-41. [ DOI:10.2174/187221210794578574] 122. Martin D, Craciun G, Manaila E, Ighigeanu D, Oproiu C, Iacob N, et al. Waste treatment by microwave and electron beam irradiation. 2007. 123. Shaheen YA. Utilization of microwave for Industrial Wastewater Treatment 2018. 124. Tyagi VK, Lo S-L. Microwave irradiation: A sustainable way for sludge treatment and resource recovery. Renewable and Sustainable Energy Reviews. 2013;18:288-305. [ DOI:10.1016/j.rser.2012.10.032] 125. Li Y, Feng H, Wang J, She X, Wang G, Zuo H, et al. Current status of the technology for utilizing difficult-to-treat dust and sludge produced from the steel industry. Journal of cleaner production. 2022;367:132909. [ DOI:10.1016/j.jclepro.2022.132909] 126. Bartolomeu M, Neves M, Faustino M, Almeida A. Wastewater chemical contaminants: Remediation by advanced oxidation processes. Photochemical & Photobiological Sciences. 2018;17(11):1573-98. [ DOI:10.1039/c8pp00249e] [ PMID] 127. Yang J, Pan M, Han R, Yang X, Liu X, Yuan S, et al. Food irradiation: An emerging processing technology to improve the quality and safety of foods. Food Reviews International. 2024;40(8):2321-43. [ DOI:10.1080/87559129.2023.2272961] 128. Naikwadi AT, Sharma BK, Bhatt KD, Mahanwar PA. Gamma radiation processed polymeric materials for high performance applications: a review. Frontiers in Chemistry. 2022;10:837111. [ DOI:10.3389/fchem.2022.837111] [ PMID] [ ] 129. Mohan S, Chopra V. Biological effects of radiation. Radiation dosimetry phosphors: Elsevier; 2022. p. 485-508. [ DOI:10.1016/B978-0-323-85471-9.00006-3] 130. Wang J, Chu L. Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: an overview. Radiation Physics and Chemistry. 2016;125:56-64. [ DOI:10.1016/j.radphyschem.2016.03.012] 131. Zang Y, Li Y, Wang C, Zhang W, Xiong W. Towards more accurate life cycle assessment of biological wastewater treatment plants: a review. Journal of Cleaner Production. 2015;107:676-92. [ DOI:10.1016/j.jclepro.2015.05.060] 132. Suliman G, Iancu V, Yasin Z. Gamma beam delivery and diagnostics. Romanian Reports in Physics. 2016;68:S447-S81. 133. Durand M, Murchie EH, Lindfors AV, Urban O, Aphalo PJ, Robson TM. Diffuse solar radiation and canopy photosynthesis in a changing environment. Agricultural and Forest Meteorology. 2021;311:108684. [ DOI:10.1016/j.agrformet.2021.108684] 134. Guide SS. Radiation protection and safety in medical uses of ionizing radiation. Specific Safety Guide SSG-46, IAEA, Vienna. 2018. 135. AsgariLajayer B, Najafi N, Moghiseh E. Review on some applications of ionizing radiation in water, sewage effluent and sludge refinement on an industrial scale. Journal of Radiation and Nuclear Technology. Summer 2017;4(2):39-51 [In Persian]. 136. Gulfishan M, Mir RA, Hussain SA, Khan S, Shabir F, Khan E. Gamma ray irradiation technology for textile surface treatment/modification: An overview. Emerging Technologies for Textile Coloration. 2022:157-70. [ DOI:10.1201/9781003140467-9] 137. Han B, Kim JK, Kim Y, Choi JS, Jeong KY. Operation of industrial-scale electron beam wastewater treatment plant. Radiation Physics and Chemistry. 2012;81(9):1475-8. [ DOI:10.1016/j.radphyschem.2012.01.030] 138. Lee O-M, Kim HY, Park W, Kim T-H, Yu S. A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process. Journal of hazardous materials. 2015;295:201-8. [ DOI:10.1016/j.jhazmat.2015.04.016] [ PMID] 139. Sgroi M, Snyder SA, Roccaro P. Comparison of AOPs at pilot scale: Energy costs for micro-pollutants oxidation, disinfection by-products formation and pathogens inactivation. Chemosphere. 2021;273:128527. [ DOI:10.1016/j.chemosphere.2020.128527] [ PMID] 140. Tarr MA. Chemical degradation methods for wastes and pollutants: environmental and industrial applications. CRC Press. 2003. [ DOI:10.1201/9780203912553] 141. Hossain MK, Raihan GA, Akbar MA, Kabir Rubel MH, Ahmed MH, Khan MI, et al. Current applications and future potential of rare earth oxides in sustainable nuclear, radiation, and energy devices: a review. ACS Applied Electronic Materials. 2022;4(7):3327-53. [ DOI:10.1021/acsaelm.2c00069] 142. Ali N, Khan AA, Wakeel M, Khan IA, Din SU, Qaisrani SA, et al. Activation of Peroxymonosulfate by UV-254 nm Radiation for the Degradation of Crystal Violet. Water. 2022;14(21):3440. [ DOI:10.3390/w14213440] 143. Daneshvar N, Aleboyeh A, Khataee AR. The evaluation of electrical energy per order (EEo) for photooxidative decolorization of four textile dye solutions by the kinetic model. Chemosphere. 2005;59(6):761-7 [In Persian]. [ DOI:10.1016/j.chemosphere.2004.11.012] [ PMID] 144. Behnajady MA, Eskandarloo H, Modirshahla N, Shokri M. Influence of the chemical structure of organic pollutants on photocatalytic activity of TiO2 nanoparticles: Kinetic analysis and evaluation of electrical energy per order (EEO). Dig J Nanomater Bios. 2011;6:1887-95.
|