[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 10, Issue 1 (spring 2019) ::
j.health 2019, 10(1): 19-33 Back to browse issues page
Review of Co-Composting Municipal Sewage Sludge with a Variety of Biological Waste
M.A Zazouli , A Ala
Mazandaran University of Medical Sciences
Abstract:   (1170 Views)
Background & objective: Direct application of sewage sludge in agriculture has been limited due to the presence of pathogens, inappropriate fermentation of organic waste and the presence of heavy metals. Co-composting of sewage sludge with biological waste is a method to reuse waste that leads safe disposal of sludge and waste. The purpose of this study was to review the advantages of co-compost and the possibility of compost production from a mixture of sewage sludge and biological waste.
Method: In this paper, various methods for the production of co-compost were also reviewed. In this paper several factors including composting process optimization, compost controlling agents, co-composting raw materials and use of sewage sludge and biological wastewater, in the preparation of compost were evaluated as well as the role of co-compost in the challenge of agricultural wastewaters.
Results: The raw sludge in a compost with organic waste, along with biochemical solids (fat, protein, and cellulose), are pure in terms of process evolution, the destruction of biochemical compounds in composting materials, the potential for pathogen inactivation, nutrient retention and improved biological activity. Proper management of municipal sewage treatment, organic and biological waste produced in the agro-industry play an important role in promoting the community health and the environment. The high cost of biological waste disposal, its environmental impacts, and the many risks associated with the use of chemical fertilizers are the problems due to ignorance compost production.
Conclusion: Therefore, producing compost and co-comosting should be considered to promot environmental health.
Keywords: Co-compost, C / N ratio, organic waste, micronutrient elements, supplemental substrate
Full-Text [PDF 476 kb]   (380 Downloads)    
Type of Study: Research | Subject: Special
Received: 2019/03/7 | Accepted: 2019/03/7 | Published: 2019/03/7
References
1. Qdais HA, Al-Widyan M. Evaluating composting and co-composting kinetics of various agro-industrial wastes. International Journal of Recycling of Organic Waste in Agriculture. 2016;5(3):273-80. [DOI:10.1007/s40093-016-0137-3]
2. Zalidis G, Stamatiadis S, Takavakoglou V, Eskridge K, Misopolinos N. Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agriculture, Ecosystems & Environment. 2002;88(2):137-46. [DOI:10.1016/S0167-8809(01)00249-3]
3. Shiralipour A, McConnell DB, Smith WH. Physical and chemical properties of soils as affected by municipal solid waste compost application. Biomass and Bioenergy. 1992;3(3-4):261-6. [DOI:10.1016/0961-9534(92)90030-T]
4. Mahajan A, Gupta RD. Integrated nutrient management (INM) in a sustainable rice-wheat cropping system: Springer Science & Business Media; 2009:46-52. [DOI:10.1007/978-1-4020-9875-8]
5. Eghball B. Soil properties as influenced by phosphorus-and nitrogen-based manure and compost applications. Agronomy Journal. 2002;94(1):128-35. [DOI:10.2134/agronj2002.0128]
6. Water S, Organization WH. Expert Consultation for 2nd Addendum to the 3rd Edition of the Guidelines for Drinking-water Quality: Geneva, 15-19, May 2006.
7. Hsu J-H, Lo S-L. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environmental Pollution. 1999;104(2):189-96. [DOI:10.1016/S0269-7491(98)00193-6]
8. Sharma V, Canditelli M, Fortuna F, Cornacchia G. Processing of urban and agro-industrial residues by aerobic composting. Energy Conversion and Management. 1997;38(5):453-78. [DOI:10.1016/S0196-8904(96)00068-4]
9. Jokela J, Rintala J, Oikari A, Reinikainen O, Mutka K, Nyrönen T. Aerobic composting and anaerobic digestion of pulp and paper mill sludges. Water science and technology. 1997;36(11):181-8. [DOI:10.2166/wst.1997.0409]
10. Diaz M, Madejon E, Ariza J, Lopez R, Cabrera F. Cocomposting of beet vinasse and grape marc in windrows and static pile systems. Compost science & utilization. 2002;10(3):258-69. [DOI:10.1080/1065657X.2002.10702088]
11. Malinska K, Richard T, editors. The impact of physical properties and compaction on biodegradation kinetics during composting. Proceedings of 5th international conference ORBIT; 2006:75-80.
12. Vidal G, Nieto J, Cooman K, Gajardo M, Bornhardt C. Unhairing effluents treated by an activated sludge system. Journal of hazardous materials. 2004;112(1-2):143-9. [DOI:10.1016/j.jhazmat.2004.04.004]
13. Karak T, Kutu F, Paul R, Bora K, Das D, Khare P, et al. Co-composting of cow dung, municipal solid waste, roadside pond sediment and tannery sludge: role of human hair. International journal of environmental science and technology. 2017;14(3):577-94. [DOI:10.1007/s13762-016-1167-0]
14. Gea T, Barrena R, Artola A, Sánchez A. Optimal bulking agent particle size and usage for heat retention and disinfection in domestic wastewater sludge composting. Waste Management. 2007;27(9):1108-16. [DOI:10.1016/j.wasman.2006.07.005]
15. Wong J, Selvam A. Speciation of heavy metals during co-composting of sewage sludge with lime. Chemosphere. 2006;63(6):980-6. [DOI:10.1016/j.chemosphere.2005.08.045]
16. Chowdhury S, Bolan NS, Seshadri B, Kunhikrishnan A, Wijesekara H, Xu Y, et al. Co-composting solid biowastes with alkaline materials to enhance carbon stabilization and revegetation potential. Environmental Science and Pollution Research. 2016;23(8):7099-110. [DOI:10.1007/s11356-015-5411-9]
17. Chen H, Dou J, Xu H. Remediation of Cr (VI)-contaminated soil with co-composting of three different biomass solid wastes. Journal of Soils and Sediments. 2018;18(3):897-905. [DOI:10.1007/s11368-017-1811-4]
18. Ding N, Li W, Liu C, Fu Q, Guo B, Li H, et al. Decline in extractable kitasamycin during the composting of kitasamycin manufacturing waste with dairy manure and sawdust. Journal of environmental management. 2014;134:39-46. [DOI:10.1016/j.jenvman.2013.12.030]
19. Hu Z, Liu Y, Chen G, Gui X, Chen T, Zhan X. Characterization of organic matter degradation during composting of manure-straw mixtures spiked with tetracyclines. Bioresource technology. 2011;102(15):7329-34. [DOI:10.1016/j.biortech.2011.05.003]
20. Zhang S, Chen Z, Wen Q, Yang L, Wang W, Zheng J. Effectiveness of bulking agents for co-composting penicillin mycelial dreg (PMD) and sewage sludge in pilot-scale system. Environmental Science and Pollution Research. 2016;23(2):1362-70. [DOI:10.1007/s11356-015-5357-y]
21. Barrena R, la Pagans E, Artola A, Vázquez F, Sánchez A. Co-composting of hair waste from the tanning industry with de-inking and municipal wastewater sludges. Biodegradation. 2007;18(3):257-68. [DOI:10.1007/s10532-006-9060-z]
22. Réveillé V, Mansuy L, Jardé É, Garnier-Sillam É. Characterisation of sewage sludge-derived organic matter: lipids and humic acids. Organic Geochemistry. 2003;34(4):615-27. [DOI:10.1016/S0146-6380(02)00216-4]
23. Sangamithirai K, Jayapriya J, Hema J, Manoj R. Evaluation of in-vessel co-composting of yard waste and development of kinetic models for co-composting. International Journal of Recycling of Organic Waste in Agriculture. 2015;4(3):157-65. [DOI:10.1007/s40093-015-0095-1]
24. Han W, Clarke W, Pratt S. Composting of waste algae: a review. Waste management. 2014;34(7):1148-55. [DOI:10.1016/j.wasman.2014.01.019]
25. Cuomo V, Perretti A, Palomba I, Verde A, Cuomo A. Utilisation of Ulva rigida biomass in the Venice Lagoon (Italy): biotransformation in compost. Journal of applied phycology. 1995;7(5):479. [DOI:10.1007/BF00003932]
26. Castaldi P, Melis P. Composting of Posidonia oceanica and its use in agriculture. Microbiology of Composting: Springer; 2002. p. 425-34.
27. Shemekite F, Gómez-Brandón M, Franke-Whittle IH, Praehauser B, Insam H, Assefa F. Coffee husk composting: an investigation of the process using molecular and non-molecular tools. Waste management. 2014;34(3):642-52. [DOI:10.1016/j.wasman.2013.11.010]
28. Alburquerque JA, Gonzálvez J, Tortosa G, Baddi GA, Cegarra J. Evaluation of "alperujo" composting based on organic matter degradation, humification and compost quality. Biodegradation. 2009;20(2):257-70. [DOI:10.1007/s10532-008-9218-y]
29. Nakasaki K, Nagasaki K, Ariga O. Degradation of fats during thermophilic composting of organic waste. Waste Management & Research. 2004;22(4):276-82. [DOI:10.1177/0734242X04045430]
30. Gea T, Ferrer P, Alvaro G, Valero F, Artola A, Sánchez A. Co-composting of sewage sludge: fats mixtures and characteristics of the lipases involved. Biochemical Engineering Journal. 2007;33(3):275-83. [DOI:10.1016/j.bej.2006.11.007]
31. Suzuki Y, Tsujimoto Y, Matsui H, Watanabe K. Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. Journal of Bioscience and Bioengineering. 2006;102(2):73-81. [DOI:10.1263/jbb.102.73]
32. Ruggieri L, Gea T, Artola A, Sánchez A. Influence of different co-substrates biochemical composition on raw sludge co-composting. Biodegradation. 2008;19(3):403-15. [DOI:10.1007/s10532-007-9146-2]
33. O'riordan T. Environmental science for environmental management: Routledge; 2014.
34. Verdonck O. Composts from organic waste materials as substitutes for the usual horticultural substrates. Biological Wastes. 1988;26(4):325-30. [DOI:10.1016/0269-7483(88)90138-3]
35. Eyras MC, Rostagno CM, Defossé GE. Biological evaluation of seaweed composting. Compost Science & Utilization. 1998;6(4):74-81. [DOI:10.1080/1065657X.1998.10701943]
36. Puyuelo B, Ponsá S, Gea T, Sánchez A. Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere. 2011;85(4):653-9. [DOI:10.1016/j.chemosphere.2011.07.014]
37. Salter C, Cuyler A. Pathogen reduction in food residuals composting. Biocycle. 2003;44(9):42-51.
38. Gomez RB, Lima FV, Bolasell MAG, Gea T, Ferrer AS. Respirometric assays at fixed and process temperatures to monitor composting process. Bioresource technology. 2005;96(10):1153-9. [DOI:10.1016/j.biortech.2004.09.026]
39. Management USEPAOoW. A guide to the biosolids risk assessments for the EPA Part 503 rule: US Environmental Protection Agency, Office of Wastewater Management; Washington DC, 1995.
40. Hassen A, Belguith K, Jedidi N, Cherif A, Cherif M, Boudabous A. Microbial characterization during composting of municipal solid waste. Bioresource technology. 2001;80(3):217-25. [DOI:10.1016/S0960-8524(01)00065-7]
41. Iannotti D, Pang T, Toth B, Elwell D, Keener H, Hoitink H. A quantitative respirometric method for monitoring compost stability. Compost Science & Utilization. 1993;1(3):52-65. [DOI:10.1080/1065657X.1993.10757890]
42. Bernal MP, Alburquerque J, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource technology. 2009;100(22):5444-53. [DOI:10.1016/j.biortech.2008.11.027]
43. Ahn H, Richard TL, Glanville T. Optimum moisture levels for biodegradation of mortality composting envelope materials. Waste Management. 2008;28(8):1411-6. [DOI:10.1016/j.wasman.2007.05.022]
44. Cronjé AL, Turner C, Williams AG, Barker AJ, Guy S. The respiration rate of composting pig manure. Compost science & utilization. 2004;12(2):119-29. [DOI:10.1080/1065657X.2004.10702170]
45. Santamaría-Romero S, Ferrera R. Dynamics and relationships among microorganisms, organic-C and total-N during composting and vermicomposting. Agrociencia. 2001;35(4):377-83.
46. Su D, McCartney D, Wang Q. Comparison of free air space test methods. Compost science & utilization. 2006;14(2):103-13. [DOI:10.1080/1065657X.2006.10702271]
47. Annan JS, White RK, editors. Evaluation of techniques for measuring air filled porosity in composts of municipal biosolids and wood chips. Proceedings of the 1998 Conference on Composting in the Southeast; 1998: 88-96.
48. Kalamdhad AS, Khwairakpam M, Kazmi A. Drum composting of municipal solid waste. Environmental technology. 2012;33(3):299-306. [DOI:10.1080/09593330.2011.572918]
49. Komilis DP. A kinetic analysis of solid waste composting at optimal conditions. Waste management. 2006;26(1):82-91. [DOI:10.1016/j.wasman.2004.12.021]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zazouli M, Ala A *. Review of Co-Composting Municipal Sewage Sludge with a Variety of Biological Waste. j.health. 2019; 10 (1) :19-33
URL: http://healthjournal.arums.ac.ir/article-1-1768-en.html


Volume 10, Issue 1 (spring 2019) Back to browse issues page
مجله سلامت و بهداشت Journal of Health
Persian site map - English site map - Created in 0.1 seconds with 32 queries by YEKTAWEB 3986